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This paper presents an analysis of flow properties in the proximity of the turbulent/
non-turbulent interface (TNTI), with particular focus on the acceleration of fluid
particles, pressure and related small scale quantities such as enstrophy, ω2 = ωiωi , and
strain, s2 = sij sij . The emphasis is on the qualitative differences between turbulent,
intermediate and non-turbulent flow regions, emanating from the solenoidal nature
of the turbulent region, the irrotational character of the non-turbulent region and the
mixed nature of the intermediate region in between. The results are obtained from a
particle tracking experiment and direct numerical simulations (DNS) of a temporally
developing flow without mean shear. The analysis reveals that turbulence influences
its neighbouring ambient flow in three different ways depending on the distance to the
TNTI: (i) pressure has the longest range of influence into the ambient region and in the
far region non-local effects dominate. This is felt on the level of velocity as irrotational
fluctuations, on the level of acceleration as local change of velocity due to pressure
gradients, Du/Dt � ∂u/∂t � −∇p/ρ, and, finally, on the level of strain due to pressure-
Hessian/strain interaction, (D/Dt)(s2/2) � (∂/∂t)(s2/2) � −sijp,ij > 0; (ii) at interme-
diate distances convective terms (both for acceleration and strain) as well as strain
production –sij sjkski > 0 start to set in. Comparison of the results at Taylor-based
Reynolds numbers Reλ = 50 and Reλ = 110 suggests that the distances to the far or
intermediate regions scale with the Taylor microscale λ or the Kolmogorov length scale
η of the flow, rather than with an integral length scale; (iii) in the close proximity of the
TNTI the velocity field loses its purely irrotational character as viscous effects lead to
a sharp increase of enstrophy and enstrophy-related terms. Convective terms show a
positive peak reflecting previous findings that in the laboratory frame of reference the
interface moves locally with a velocity comparable to the fluid velocity fluctuations.

1. Introduction
Many flows observed in nature are partly turbulent (e.g. Scorer 1997), where

the turbulent regions are separated from surrounding irrotational (non-turbulent)
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154 M. Holzner, B. Lüthi, A. Tsinober and W. Kinzelbach

regions by a sharp interface, the so-called turbulent/non-turbulent interface (TNTI).
Common examples are smoke plumes from chimneys, effluents from pollution outlets,
clouds, volcanic eruptions, seafloor hydrothermal vents and many others. Turbulent
entrainment is the process of continuous transition from laminar to turbulent flow
across the TNTI. Entrainment has a direct impact on the dynamics and mixing, for
example, transport rates of active quantities across the entrainment interface (e.g.
momentum, vorticity) as well as passive quantities (e.g. heat). Despite the importance
of the problem, there are many open questions that significantly hamper fundamental
understanding, accurate modelling and proper parametrization (e.g. see the recent
review of Hunt, Eames & Westerweel 2006). Early experimental and theoretical
studies (e.g. Corrsin 1943; Corrsin & Kistler 1954) discovered several salient features
of the spreading of turbulence into regions of undisturbed fluid. In these studies, the
TNTI was described as a sharp and strongly convoluted boundary, which fluctuates
about a mean position with a velocity that is comparable to the velocity of the
energy containing eddies v′, where v′ = (〈u2〉 + 〈v2〉 + 〈w2〉)1/2 (u, v and w are the
three velocity components in x1, x2 and x3 directions, x2 is the direction normal
to the average TNTI and the angle brackets denote the average). On the other
hand, a mechanism related to the small scales of the flow was pointed out. Namely,
viscous forces were inferred to play a central role for the propagation of the TNTI
relative to the fluid. This propagation velocity was assumed to be proportional to
the velocity of the viscous eddies, the Kolmogorov velocity uη. Nevertheless, the
well-known observation that the global entrainment rate is independent of the small-
scale parameters of the flow (see Tritton 1988; Tsinober 2001; Hunt et al. 2006 and
references therein) suggests that the two ranges of scales must be strongly coupled,
but it is not known exactly how. On the ‘non-turbulent’ side of the boundary, the
movements of the TNTI were found to induce irrotational velocity fluctuations. The
irrotational field can be described by a potential Φ , and the field is specified in a
given volume once boundary conditions are assigned. In a theoretical study, Phillips
(1955) used a random distribution of normal velocity fluctuations v0 at the location
of the TNTI, x̂2 = 0, and secondly the condition ∇Φ = 0 at x̂2 → ∞, where x̂2 is
the distance to the TNTI. With these conditions Phillips predicted that on average
the square root of the energy of irrotational velocity fluctuations should decay as
〈v〉 ∝ x̂−2

2 . A similar, somewhat simpler analysis can be found in Landau & Lifshitz
(1959). The problem of determining v0 for a true turbulent flow was not considered
by Phillips (1955) and therefore, very close to the TNTI the prediction does not hold.
In fact, in the boundary layer experiments of Bradshaw (1967) the prediction was
verified, but only for distances larger than several boundary layer thicknesses away
from the TNTI. At distances comparable to or smaller than the wavelength carrying
most of the turbulent energy (say, an integral scale L), the behaviour changes due to
the influence of turbulence.

One of the goals of the present contribution is to provide a clearer view of processes
occurring in the irrotational region in the proximity of the TNTI. The focus is on
quantities related to both small scales (e.g. vorticity) and larger scales of motion (e.g.
velocity). Till recently, studies of this kind were difficult to conduct experimentally,
since they require detailed information on the fields of vorticity and strain. Also for
this reason little is known about the processes at small scales in the proximity of the
entrainment interface. A few exceptions are recent particle image velocimetry (PIV)
and planar laser-induced fluorescence (PLIF) experiments by Westerweel et al. (2002,
2005) of a jet and the particle tracking experiments and simulations by Holzner
et al. (2006, 2007, 2008). Direct numerical simulation (DNS) was used to analyse a
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temporally developing wake by Bisset, Hunt & Rogers (2002) and an axisymmetric
jet configuration was studied by Mathew & Basu (2002). Holzner et al. (2007, 2008)
showed that strain decays more slowly than vorticity with distance to the TNTI.
However, many aspects, among them the precise reason for this different behaviour
or the role of pressure and acceleration, remained open. The present work attempts
to elucidate some of these issues and extends the analysis of Holzner et al. (2007)
to the irrotational ambient region of the flow. We use particle tracking velocimetry
(PTV) data and DNS to discuss the terms of the Navier–Stokes equation,

Du
Dt

= a = −∇p/ρ + ν∇2u, (1.1)

and the balance equation for enstrophy, written as

D

Dt

ω2

2
= ωiωj sij + νωi∇2ωi (1.2)

and rate of strain, reading

D

Dt

s2

2
= −sij sjkski − 1

4
ωiωj sij − sij

∂2p

∂xi∂xj

+ νsij ∇2sij . (1.3)

In addition, we consider also the decomposition of the material derivative in its
Eulerian parts, i.e. D/Dt = ∂/∂t + u · ∇. In the next section we describe the methods
that were used in this study, before we discuss the results in § 3 and finally draw our
conclusions.

2. Method
Both the experiment and simulation were also described in previous studies by

the authors and for the details the reader is referred to Holzner et al. (2008) and
references therein. Here we summarize the main parameters and report small changes
in the experiment and processing of experimental data. For the experiment, a planar
grid installed horizontally on top of a water tank was used to force the turbulent
flow. As the grid oscillation is started, a turbulent region develops. The turbulence
then propagates in time along the direction normal to the grid through entrainment
of surrounding, initially still fluid. The grid is a fine woven screen with a mesh size of
4 mm and a diameter of the circular grid bars of 1 mm and oscillates at a frequency
of 6 Hz and with an amplitude of 5 mm. The global Reynolds number associated
with these parameters is of the order of 103 (Voropayev & Fernando 1996). For the
measurement of the velocity and velocity derivatives we used the scanning method
of three-dimensional PTV described in detail in Hoyer et al. (2005). The method is
based on stereoscopic imaging of neutrally buoyant tracer particles seeded into the
water. Four Microtron high-speed cameras were operated at the frequency of 500 Hz
and the volume scan rate was 50 Hz. The number of tracked particles per frame was
about 5 · 103 in a volume of 3×3.2×2.5 cm3, about 2 cm away from the grid and with
a mean interparticle distance of about 1.5 mm. Measurements of particle positions
are affected by noise and the signal was low-pass filtered to access quantities like
acceleration (see Holzner et al. 2008 and references therein). The velocities and their
derivatives were calculated in the same way as described in Hoyer et al. (2005) and
Holzner et al. (2007) and they were interpolated on a regular Eulerian grid with 2 mm
spacing. We estimated the Kolmogorov length scale η = 0.6 mm using η = (ν3/ε)1/4,
where ε =2ν〈s2〉 is the measured mean dissipation (s2 = sij sij is the rate of strain, sij
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are the components of the rate of strain tensor and ν is the kinematic viscosity of the
fluid). The Taylor microscale λ is estimated at 7 mm and the Kolmogorov time scale is
τη = 0.3 s. The r.m.s velocity of the turbulent flow v′ is about 8 mms−1 and the Taylor
microscale Reynolds number was Reλ = 50. Since the interparticle distance is almost a
factor three larger than η, the experiment is spatially under-resolved. This means that
the conclusions to be drawn will be to some extend qualitative and this is precisely
one of the reasons why results from both experiment and numerical simulations will
be presented. The accuracy of the experimental technique was assessed by Lüthi,
Tsinober & Kinzelbach (2005); see also the validations in Gulitski et al. (2006),
where velocity gradients measured via hot-wire techniques were compared to PTV
measurements and the results in Schumacher, Sreenivasan & Yakhot (2007), which
indicate that under-resolved data reproduces faithfully the flow at scales about two
times smaller than those resolved, at least as far as the instantaneous dissipation
rate is concerned. Since our measurements are concerned with a rather different
flow situation compared to those cited above (e.g. involving sharp interfaces), we
performed an additional check: we produced a ‘synthetic’ experimental data set with
the use of Lagrangian data from DNS (see Holzner et al. 2008 for details on the
algorithms used for the integration of particle trajectories). The trajectories were
adapted to the real experiment in terms of coarser spatial and temporal resolution
and Gaussian position noise was added to mimic instrument noise. The trajectories
were processed by using the PTV algorithms and gradients of the velocity, ∂ui/∂xj ,
and acceleration, ∂ai/∂xj , were compared pointwise to the accurate (i.e. well resolved)
values. With this method we obtained relative errors on the order of 10 % and 22 %
for derivatives of the velocity and acceleration, respectively, in agreement with the
estimates in Lüthi et al. (2005). It was also verified that the experimental error did
not increase after quantities were interpolated onto an Eulerian grid. The processing
was extended to allow also for measurements of the pressure gradient ∇p. The
pressure gradient was obtained indirectly from (1.1) in the form −∇p/ρ = a − ν∇2u
by using the measurements of Lagrangian acceleration a, and the viscous term
ν∇2u, i.e. involving second derivatives of the velocity. The pressure–strain and the
viscous term in (1.3) can presently not be obtained through PTV, but they are
available from the DNS. DNS were performed at two different Reynolds numbers
in a box of fluid initially at rest (Holzner et al. 2008). Random (in space and time)
velocity perturbations are applied at the boundary x2 = 0. The method of boundary
velocity assignment determines the velocity scale, V =max(Vi) and the length scale 
l .
Together with the viscosity of a fluid ν these parameters define the Reynolds number
Re = V 
l/ν = 1000 and 4000 of the simulations. The corresponding Taylor microscale
Reynolds numbers are Reλ = 50 and 110, respectively. The Navier–Stokes equations
are solved with a finite differences scheme and with time advancement computed by
a semi-implicit Runge–Kutta method (Nikitin 2006). The resolution is 256×256×256
grid points in x1, x2 and x3 direction. The size of the domain is a box of side lengths
5L, 3L, 5L for the lower and 2.5L, 1.5L, 2.5L for the higher Reynolds number,
respectively. The local Kolmogorov length scale is about twice the spacing between
grid points for both simulations and the ratios λ/η are about 12 and 20 for Reλ = 50
and 110, respectively. The flow is inhomogeneous in x2 direction and therefore also
the following direction-dependent parameters were calculated: the estimates of the
surrogates ηi = 15ν〈s2

ii〉 lie within the range η ± 4 %, the values of λi = (〈u2
i 〉/〈s2

ii〉)1/2
are within (λ1 + λ2 + λ3)/3 ± 9 % and the fluctuating r.m.s. velocities for the three
directions are estimated at v’/

√
3 ± 14 % for both experiment and simulations (no

summation over repeated indices applies here).
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Figure 1. Logarithmic contour levels of ω2τη
2 (a) and s2τη

2 (b) from a DNS Reλ = 50
snapshot at x3 = 2.5L. The colour bar refers to both (a) and (b).

3. Results
We analyse the spreading of a turbulent flow into its irrotational ambient. In both

experiment and simulation the forcing is located in the plane x2 = 0 and turbulence
spreads on average along x2 > 0. As illustrative example, figure 1 shows logarithmic
contour plots of the quantities ω2 (figure 1a) and s2 (figure 1b) obtained from a
representative DNS Reλ = 50 snapshot. It can be seen (figure 1a) that there are
regions where ω2 is high, with values, say, of the order of 100 or higher, bounded by
regions where ω2 is many decades lower. On the other hand, the qualitative behaviour
of s2 is very different (figure 1b). This quantity also decreases, but much more slowly,
as pointed out in Holzner et al. (2007). The following statistical analysis is done with
respect to the distance to the TNTI, x̂2, defined as x̂2 = x2 − x∗

2 , where x∗
2 (x1, x3, t)

marks the instantaneous three-dimensional position of the TNTI detected by using
a fixed threshold on enstrophy (for details see Holzner et al. 2007 and references
therein). All quantities are ensemble averaged over homogeneous directions x1, x3

and time, i.e. 〈q〉(x̂2) = 〈q(x1, x̂2, x3, t)〉x1,x3,t .
Figure 2 shows the same quantities, ω2 and 2s2, conditionally averaged as described

above. In this and the following figures, when not explicitly stated otherwise, lines
represent results obtained from DNS at Reλ = 50, symbols are from the measurement.
As noted by Bisset et al. (2002), Mathew & Basu (2002), Westerweel et al. (2005),
Holzner et al. (2006) and Holzner et al. (2007), for instance, we see that ω2 drops from
high values to very low values within a short distance. We remark that this distance (at
the considered Reynolds number) is comparable to a few Kolmogorov length scales
η, and the region x̂2/η > 5 is regarded as irrotational. The question whether in general
the distance to the irrotational region is proportional to η or might rather scale with
a different length scale of the flow is addressed below as a final point of this section.
Experimentally, it is not possible to obtain quantities like ω2 lower than a level of noise
represented on the figure by error bars. In this and the following figures, the error bars
represent an r.m.s value of the respective quantity taken over the interval where this
noise level is reached. As mentioned before, 2s2 decays comparatively slower and the
measured points closely follow the line obtained from the simulation until again some
noise level is reached. In the turbulent region, the approximate relation 〈ω2〉 � 〈2s2〉
holds, similar to (statistically stationary) homogeneous turbulence. We recall the
convention introduced in Holzner et al. (2007), where three physically distinct regions
with respect to the behaviour of the term νωi∇2ωi were defined (see figure 2a (top)):
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Figure 2. Average profiles of ω2(x̂2) and 2s2(x̂2) from PTV (symbols), and DNS at Reλ = 50
(lines) relative to the TNTI, x̂2 = x2 −x∗

2 , on semilogarithmic scale (a). The axes are normalized
by using the Kolmogorov length and time scales. The error bars represent the accuracy of the
measurement. The symbol 〈 · 〉 denotes the ensemble average of the respective quantity. (b)

Profile of v =
√

u2 + v2 + w2 normalized over the r.m.s. velocity on log–log and in the inset on
semilogarithmic axes.

(A) the turbulent region, x̂2/η < −1, in which the behaviour of the viscous term
νωi∇2ωi is ‘normal’, i.e. it is negative in the mean and (B, C) the intermediate regions
−1 < x̂2/η < 5, where the viscous term is positive in the mean 〈νωi∇2ωi〉 > 0, and
responsible for the sharp increase of ω2. We introduce a fourth region (D), the interval
x̂2/η > 5, denoted as irrotational region. Due to the irrotational nature of this region,
the viscous term ν∇2u is vanishing and (1.1) reduces to Du/Dt = a = −∇p/ρ and,
since ν∇2u is zero, also ν∇2sij = 0, (in addition, ωiωj sij = 0) and hence (1.3) reduces
to (D/Dt)(s2/2) = −sij sjkski − sij (∂

2p/∂xi∂xj ). Therefore, in region D the Lagrangian
acceleration is irrotational and defined by pressure gradients only and viscosity can
not play any role for the change of strain. Phillips (1955) theoretically predicted that
the square root of the energy, v = (u2 +v2 +w2)1/2, of irrotational velocity fluctuations
(on average) decrease with distance to the interface as x̂−2

2 . In figure 2(b) we show the
distance dependence of the magnitude of this quantity and we note that it attenuates,
but the predicted slope is not yet reached within the considered span, similar to the
results in Bradshaw (1967). We shall see that there is a close connection between the
distance dependence of velocity fluctuations and the behaviour of a variety of other
quantities analysed in the following.

First, we consider the acceleration of fluid particles and its decompositions. Figure 3
shows the behaviour of the moduli of the total acceleration and its decomposition in
pressure gradient and viscous term, (1.1) (figure 3a), as well as its decomposition in
Eulerian components (figure 3b). The procedure is that first the modulus of a quantity
is taken and then it is conditionally averaged in space and time, i.e. 〈|q|〉x1,x3,t . In
homogeneous turbulence, a is known to be driven mostly by pressure gradients and
therefore the quantity is mostly irrotational. This is increasingly the case the higher
the Reynolds number (e.g. Vedula & Yeung 1999; Tsinober, Vedula & Yeung 2001).
This trend is confirmed in figure 3(a), where the modulus of the viscous term on
the turbulent side is (on average) about an order of magnitude smaller than the
modulus of the pressure gradient, in agreement with the results in Vedula & Yeung
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Figure 3. (a) Average profiles of the moduli of terms of (1.1) and (b) Lagrangian
acceleration and its Eulerian components.

(1999) and Tsinober et al. (2001). Consistent with the above discussion, the term
ν∇2u drops very sharply on the positive x̂2-axis and in region D the acceleration is
entirely driven by pressure gradients and therefore a purely irrotational quantity. It
is noteworthy that a decrease of the Reynolds number in homogeneous turbulence
is qualitatively very different from the spatial transition to irrotational flow (with
smaller local Reynolds number) considered here. In the former case, the term ν∇2u
gains relative importance for decreasing Re, while in the latter case the term ν∇2u
vanishes. Hence, a is irrotational in region D, because the velocity field is irrotational,
seemingly similar to region A, where a is also mostly but not entirely irrotational.
However, the irrotationality in region A is due to ‘mutual cancellation’ of acceleration
components, as outlined in the following. The total acceleration a is a sum of local al

and convective parts ac, i.e. a = al+ac = ∂u/∂t + u · ∇u. In statistically stationary and
homogeneous turbulence it is known that typically |al | ∼ |ac| � |a|. The reason is that
al and ac almost mutually cancel each other out, i.e. the two vectors are typically anti-
aligned (e.g. Tsinober et al. 2001; Gulitski et al. 2006). This is increasingly the case the
higher the Reynolds number (e.g. Tsinober et al. 2001). In homogeneous turbulence,
the local acceleration al is a purely solenoidal quantity (because the velocity field is
solenoidal), whereas the convective acceleration ac has also an irrotational part. The
local acceleration cancels out most of the solenoidal part of ac, so that the resulting
a is in fact mostly irrotational. Due to the relatively low Reynolds number in the
present work, we note that all three quantities are comparable in magnitude in region
A (see figure 3b). The figure shows that the modulus of ac drops considerably faster
than those of a and al across the TNTI, and a is more and more close to al at farther
distances. Very different from region A, al and ac are both irrotational in region D,
but ac becomes very small compared to al so that a is very close to al . The faster
decay of ac in region D can be partly explained by the fact the the fluctuating velocity
attenuates and ac is quadratic in the velocity, whereas al is linear in the velocity.
However, this argument alone is not sufficient, as for a complete explanation also an
argument on the behaviour of the derivatives ∂/∂t and ∂/∂x is needed and this point
remains open.

As a next step we analyse in more detail the dynamical reasons for the different
behaviour of enstrophy and strain and analyse all terms in the respective balance
equations, (1.2) and (1.3). Figure 4(a) shows the enstrophy terms of (1.2), the total
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change is represented by the two Eulerian components, where the convective term
is plotted for convenience with a minus sign. The same is shown in Figgure 4(b)
for the strain terms of (1.3). On the turbulent side the average production terms are
positive and approximately balanced by viscous dissipation, i.e. 〈ωiωj sij 〉 � 〈νωi∇2ωi〉
and similarly on figure 4(b) we show that 〈sij sjkski〉 + 1/4〈ωiωj sij 〉 � 〈νsij ∇2sij 〉, as
it is known in homogeneous statistically stationary turbulence. Notably, both the
average local and convective terms show pronounced positive peaks in the proximity
of the origin, whereas on the turbulent side they are small, as they are known to
be in homogeneous turbulence. In correspondence to the peak, the magnitudes of
the average (∂/∂t)(ω2/2) and −(u · ∇)ω2/2 are close to each other (and the same is
true for the strain terms), whereas the other terms are comparatively small at the
origin. This shows that the change of ω2 at a fixed location is mostly determined by
the convective transport of the fluid. This result reflects previous observations from
point measurements in (statistically stationary) shear flows that the TNTI fluctuates
about a mean position and is swept past the probe with a velocity that is close to
the turbulent velocity fluctuations of the fluid at that location (e.g. Corrsin & Kistler
1954). In other words, the local advancement of the TNTI in the laboratory frame
of reference is governed by v′. This should not be confused with the velocity of the
TNTI relative to the fluid, which is governed by a different velocity scale, namely the
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Kolmogorov velocity uη (see Holzner et al. 2008). Similar to the case of enstrophy,
also for the local change of strain the convective transport is dominating the dynamics
at close distances to the TNTI (figure 4b), but further away the behaviour changes
as will be shown in the following. Figure 4(c) shows the material change of s2 and
its decomposition in Eulerian components. Similar to the acceleration, the convective
term for strain drops faster than its local counterpart, and the material change of s2

becomes more and more close to its local derivative. A simple argument to explain in
part this behaviour is again that the convective term is cubic in the velocity, while the
other two terms are quadratic. Next, we have a closer look at the terms in the equation
for strain, (1.3). They are shown in figure 4(d ), where the terms ωiωj sij and νsij ∇2sij

are plotted with reversed sign to allow for logarithmic representation. We see that
pressure has the longest range of influence into the ambient, and that at far distances,
x̂2 ∼ 50η for the considered Reynolds number Reλ = 50, non-local effects dominate
the evolution of strain. Also here, the question whether in general the distance to
the far region is proportional to η or might rather scale with a different length scale
is addressed further below. The strain production term –sij sjkski drops faster than
(D/Dt)(s2/2) and –sijp,ij , similar to the convective term seen before. The reasons for
the different behaviour of –sij sjkski and –sijp,ij lie probably in the non-local nature
of –sijp,ij as contrasted to the local nature of –sij sjkski .

Figures 5(a) and 5(b) show joint PDFs of the terms (D/Dt)(s2/2) versus (∂/∂t)(s2/2)
and (D/Dt)(s2/2) versus –sijp,ij , respectively, for the region D. We find that the
contours are almost aligned with the bisector (dashed line) and they are (in figure 5b
more strongly than figure 5a) skewed towards the positive axes. Hence we show that
even pointwise there is an approximate balance between (D/Dt)(s2/2) and (∂/∂t)(s2/2)
and (D/Dt)(s2/2) � –sijp,ij > 0, i.e. pressure Hessian/strain interaction is clearly the
governing mechanism for the amplification of strain in region D. The low magnitude
of these normalized quantities in region D (∼10−3) indicates that there might be a
more appropriate normalization factor than τ 3

η for these quantities in the irrotational
region. The non-local process in the irrotational region is also manifested in strong
geometrical effects. We define the cosine of the angle between the strain tensor and
pressure Hessian as cos(sij , p,ij ) = I ·II{I 2}−1/2{II 2}−1/2, where I = sij and II = −p,ij .
The Probability Density Function (PDF) of this quantity is shown in figure 5(c) for the
regions A and D and we note that the PDF is strongly positively skewed in region D,
in contrast to region A, where it is more symmetric. Figure 6 shows PDFs of the cosine
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Figure 6. PDF of the absolute values of the cosines of the angle between the three eigenvectors
of the rate of strain tensor λi and the pressure Hessian ζi respectively for the regions A (a–c)
and D (d–f ), from DNS at Reλ =50 only.

between the three eigenvectors of the rate of strain tensor λi and the pressure Hessian
ζi respectively for the turbulent region (figure 6a–c) and the irrotational region (figure
6d–f ). For the turbulent region (figure 6a–c) the results are in close agreement to the
ones of Kalelkar (2006) obtained from DNS of decaying isotropic turbulence. We find
a preferential alignment angle between (λ1,ζ1) of about π/4, whereas the intermediate
eigenvector λ2 is predominantly aligned with ζ2. The compressive eigenvector λ3 has
a preferential alignment angle with ζ3 again close to π/4, whereas it is preferably not
aligned with ζ2. In the irrotational region, the eigenvectors ζ1 and ζ3 are found to be
predominantly aligned with λ3 and λ1, respectively. On the other hand, the behaviour
of the second eigenvector is qualitatively the same as in the turbulent region.

Finally, figure 7 compares the distance dependence of quantities as obtained from
DNS at Reλ = 50 (thick lines) and Reλ = 110 (thin lines), where the distance is
normalized by L (figure 7a,d,g), λ (figure 7b,e,h) and η (figure 7c,f,i ). Figure 7(a–c)
compares the behaviour of ω2 and 2s2, where the error bars represent the numerical
noise level of the quantity ω2. This level is of the order of 10−10 and decreases
somewhat with distance to the TNTI. The sharper bend of ω2 at x2/η ∼ 5 (figure 7c)
for the higher Reynolds number case is due to a lower variance of the conditionally
averaged quantity at that distance. In figure 7(c) the two curves showing ω2 collapse
and the curves corresponding to 2s2 show the same slope in region D, whereas
the curves in figure 7(b) are overall closer to each other. Similarly, also for the
terms of (1.1) (figure 7d–f ) and terms of (1.3) (figure 7g–i ), the normalization
by η yields approximately the same slopes of the curves in region D for the two
Reynolds numbers. On the other hand, some curves are closer to each other when x̂2

is normalized by λ, also if their slopes in region D are different (e.g. figure 7h). We can
therefore rule out L as a scaling parameter, but it is not fully clear from the results
at these moderate Reynolds numbers whether η or λ is the appropriate parameter
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to characterize the distance to the irrotational or far region. Future measurements at
much higher Reynolds numbers will have to answer whether the appropriate scaling
of x̂2 and the quantities themselves is possibly ‘mixed’ or rather based on inner
variables only.

4. Conclusions
In summary, we used a particle tracking experiment and DNS to examine various

flow properties in the proximity of the TNTI. From the technical point we note that
the qualitative agreement between measurements and simulation is satisfactory, except
when the magnitudes of the measured quantities are smaller than the accuracy of the
experimental method, since the numerical noise level lies far below the experimental
one. We analysed quantities like the velocity and the acceleration of fluid particles
and small-scale quantities like enstrophy and strain. The evolution of all these
quantities in the nominally non-turbulent ambient flow was shown to be governed by
the turbulent region non-locally through pressure. In particular, pressure gradients
are solely responsible for the acceleration of fluid particles and pressure gradients
induce deformation of fluid elements through pressure–strain interaction. These effects
dominate at larger distances from the interface. The second way turbulence influences
the ambient flow is through convective acceleration and strain terms. They become
increasingly important closer to the TNTI, where the streamlines are presumably



164 M. Holzner, B. Lüthi, A. Tsinober and W. Kinzelbach

more contorted by the complex shape of the interface. Comparison of the results
from two simulations at Reλ = 50 and 110 suggested that either the Kolmogorov
length scale or Taylor microscale of the flow is the appropriate measure to delimit
the distance to the irrotational or far regions, rather than an integral length scale,
but experiments and simulations at higher Reynolds will be needed to further clarify
this point. The dominance of convective terms in the close proximity of the TNTI
explains why the local fluctuations of the position of the TNTI in the laboratory
frame of reference are governed by the fluid velocity fluctuations.
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